Unsupervised Multi-Class Domain Adaptation: Theory, Algorithms, and Practice

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Multi-Domain Adaptation with Feature Embeddings

Representation learning is the dominant technique for unsupervised domain adaptation, but existing approaches have two major weaknesses. First, they often require the specification of “pivot features” that generalize across domains, which are selected by taskspecific heuristics. We show that a novel but simple feature embedding approach provides better performance, by exploiting the feature tem...

متن کامل

Unsupervised Transductive Domain Adaptation

Supervised learning with large scale labeled datasets and deep layered models has made a paradigm shift in diverse areas in learning and recognition. However, this approach still suffers generalization issues under the presence of a domain shift between the training and the test data distribution. In this regard, unsupervised domain adaptation algorithms have been proposed to directly address t...

متن کامل

A Theory of Output-Side Unsupervised Domain Adaptation

When learning a mapping from an input space to an output space, the assumption that the sample distribution of the training data is the same as that of the test data is often violated. Unsupervised domain shift methods adapt the learned function in order to correct for this shift. Previous work has focused on utilizing unlabeled samples from the target distribution. We consider the complementar...

متن کامل

Multi-Domain Neural Machine Translation through Unsupervised Adaptation

We investigate the application of Neural Machine Translation (NMT) under the following three conditions posed by realworld application scenarios. First, we operate with an input stream of sentences coming from many different domains and with no predefined order. Second, the sentences are presented without domain information. Third, the input stream should be processed by a single generic NMT mo...

متن کامل

Unsupervised Domain Adaptation: A Multi-task Learning-based Method

This paper presents a novel multi-task learningbased method for unsupervised domain adaptation. Specifically, the source and target domain classifiers are jointly learned by considering the geometry of target domain and the divergence between the source and target domains based on the concept of multi-task learning. Two novel algorithms are proposed upon the method using Regularized Least Squar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence

سال: 2020

ISSN: 0162-8828,2160-9292,1939-3539

DOI: 10.1109/tpami.2020.3036956